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1. The hyperbola H has equation 

16

2x  – 
9

2y  = 1. 

 
Find 
 
(a)  the coordinates of the foci of H, 

(3) 

(b)  the equations of the directrices of H. 
(2) 

 
 

2.  

 
 

Figure 1 
 
The curve C, shown in Figure 1, has equation 
 

y = 
3
1  cosh 3x,         0 d x d ln a, 

 
where a is a constant and a > 1. 
 
Using calculus, show that the length of curve C is 
 

k ¸
¹
·

¨
©
§ � 3

3 1
a

a  

and state the value of the constant k. 
(6) 
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3.  The position vectors of the points A, B and C relative to an origin O are i − 2j− 2k, 7i − 3k and 
4i + 4j respectively. 
 
Find 
 
(a)  AC  × BC , 

(4) 

(b)  the area of triangle ABC, 
(2) 

(c)  an equation of the plane ABC in the form r. n = p. 
(2) 

 

4.       In = xxxn d2sin
4

0
µ¶
´

S

,    n t 0. 

 
(a)  Prove that, for n t 2, 

In = 
4
1 n

1

4

�

¸
¹
·

¨
©
§

nS – 
4
1 n(n – 1) In – 2. 

 (5) 

(b)  Find the exact value of I2. 
(4) 

(c)  Show that I4 = 
64
1 (S 3 – 24S + 48). 

 (2) 
 
 

5. (a)  Differentiate x arsinh 2x with respect to x. 
(3) 

(b)  Hence, or otherwise, find the exact value of 
 

xx d2arsinh
2

0
µ¶
´

�

. 

 
 giving your answer in the form A ln B + C, where A, B and C are real. 

(7) 
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6. The ellipse E has equation 

2

2

a
x  + 2

2

b
y  = 1. 

 
The line l1 is a tangent to E at the point P (a cos θ, bsin θ ). 
 
(a) Using calculus, show that an equation for l1 is 
 

a
x Tcos  + 

b
y Tsin  = 1. 

 (4) 
 
The circle C has equation 

x2 + y2 = a2. 
 
The line l2 is a tangent to C at the point Q (a cos θ, a sin θ ). 
 
 
(b)  Find an equation for the line l2. 

(2) 
 
Given that l1 and l2 meet at the point R, 
 
(c)  find, in terms of a, b and θ, the coordinates of R. 

(3) 

(d)  Find the locus of R, as θ varies. 
(2) 

 
7.      f(x) = 5 cosh x − 4 sinh x,    x � ℝ. 

 

(a)  Show that f(x) = 
2
1 (ex + 9e–x). 

 (2) 
 
Hence 
 
(b)  solve f(x) = 5, 

(4) 

(c)  show that µ¶
´

�

3ln

3ln
2
1 sinh4cosh5

1
xx

 dx = 
18
S . 

 (5) 
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8. The matrix M is given by 

M = 
¸
¸
¸

¹

·

¨
¨
¨

©

§

� 401
021
012

. 

 
(a)  Show that 4 is an eigenvalue of M, and find the other two eigenvalues. 

(5) 

(b)  For the eigenvalue 4, find a corresponding eigenvector. 
(3) 

 
The straight line l1 is mapped onto the straight line l2 by the transformation represented by the 
matrix M. 
 
The equation of l1 is (r − a) × b = 0, where a = 3i + 2j− 2k and b = i − j+ 2k. 
 
(c)  Find a vector equation for the line l2. 

(5) 
 

TOTAL FOR PAPER: 75 MARKS 
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Mark Scheme  
 

Question 
Number Scheme Marks 

1.   (a) 
 Uses formula to obtain 5

4
e =   

M1A1 
 

 Uses  ae  formula M1  (3) 

     (b) 
Uses other formula  a

e
 

Obtains both Foci are ( 5,0)±   and Directrices are x = 16
5±  (needs both 

method marks) 

M1  
 
 
A1 cso (2) 
(5 marks) 
 
 
 

 
 
Notes 
a1M1:  Uses 2 2 2( 1)b a e= −  to get 1e >  
a1A1:  cao 
a2M1: Uses ae 

b1M1:  Uses a
e

 

b1A1:  cso for both foci and both directrices. Must have both of the 2 previous M marks may 
be implicit. 
 



   

  

 
Question 
Number Scheme Marks 

 
2. 

d sinh 3
d
y x
x
=    

 
B1 

 so s = 21 sinh 3 dx x+∫  M1 

 s∴ = cosh 3 dx x∫  A1 

    = ln1
3 0
sinh 3 ax⎡ ⎤⎣ ⎦  M1 

   = 3ln -3ln1 1
3 6sinh 3ln [e e ]a aa = −   

DM1   

 
  =  31

6 3

1( )a
a

−                                (so k = 1/6) 
 
A1          
 (6 marks) 
 

 
 
Notes 
 
1B1: cao 

1M1:  Use of arc length formula, need both and 
2dy

dx
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

1A1:  cosh 3 dx x∫  cao   
2M1:  Attempt to integrate, getting a hyperbolic function o.e. 
3M1:  depends on previous M mark. Correct use of  lna and 0 as limits. Must see some 
exponentials. 
2A1:  cao 
 
 
 



   

  

 
 

Question 
Number Scheme Marks 

 
3. (a) 
 

               
3 6 2AC = + +i j k

uuur
,                 3 4 3BC = − + +i j k

uuur
 

10 15 30AC BC× = − +i j k
uuuv uuuv

 
 

 
B1,   B1 
 
M1 A1  

(4) 
    
   (b) 
 

               
   Area of triangle ABC = 1

2 10 15 30− +i j k = 1
2 1225 17.5=  

       
 

 
M1 A1  

(2)

   
   (c) 
 

              
  Equation of plane is 10 15 30 20x y z− + = −  or 2 3 6 4x y z− + = −  
So  r. (2i – 3j + 6k) = -4 or correct multiple 

 
M1  
A1          (2) 

( 8 marks)
 

 
Notes 
a1B1:  3 6 2AC = + +i j k

uuur
 cao, any form 

a2B1: 3 4 3BC = − + +i j k
uuur

 cao, any form  
a1M1: Attempt to find cross product, modulus of one term correct. 
a1A1: cao, any form. 
b1M1:  modulus of their answer to (a) – condone missing ½ here. To finding area of triangle 
by correct method. 
b1A1: cao. 
c1M1: [Using their answer to (a) to] find equation of plane. Look for a.n or  b.n or  c.n for p. 
c1A1: cao 



   

  

 
 

Question 
Number Scheme Marks 

4(a) 44 11 1
2 20 0

( cos 2 ) cos 2 dn n
nI x x nx x x

ππ
−⎡ ⎤= − − −⎣ ⎦ ∫  M1 A1 

 so
44 41 21 1 1

2 4 40 0 0
( cos 2 ) sin 2 ( 1) sin 2 dn n n

nI x x nx x n n x x x
ππ π

− −⎡ ⎤ ⎡ ⎤= − + − −⎣ ⎦ ⎣ ⎦ ∫  

 
M1 A1 

 
i.e.   

1

2
1 1 ( 1)
4 4 4

n

n nI n n n Iπ −

−
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

  * 
 
A1cso 

  (5) 

(b)  [ ]4 41
0 2 00

sin 2 d cos 2I x x x
π π

= = −∫ = 1
2  M1 A1 

  
2 0

1 12 2
4 4 4

I Iπ⎛ ⎞= × × − × ×⎜ ⎟
⎝ ⎠

 , so  2
1

8 4
I π
= −

  
M1 A1 

(4)

(c) 3

4 2
1 4 3

4 4
I Iπ⎛ ⎞= − × ×⎜ ⎟

⎝ ⎠
 = 

3 13
64 8 4
π π⎛ ⎞− −⎜ ⎟

⎝ ⎠
= 31

64 ( 24 48)π π− + * 
 

M1 A1cso 
(2)

 
 
Notes 
a1M1: Use of integration by parts, integrating sin 2x , differentiating nx . 
a1A1: cao 
a2M1:  Second application of integration by parts, integrating cos 2x , differentiating 1nx − .  
a2A1:  cao 

a3A1:  cso Including correct use of 
4
π and 0 as limits. 

b1M1: Integrating to find 0I  or setting up parts to find 2I . 
b1A1: cao ( Accept  0I  = ½ here for both marks) 
b2M1: Finding 2I in terms of π . If ‘n’’s left in M0 
b2A1: cao 
c1M1: Finding 4I  in terms of 2I  then in terms of π . If ‘n’’s left in M0 
c1A1: cso 
 
 
 
 
 
 
 
 



   

  

 
 

Question 
Number Scheme Marks 

 
5. (a) 

 

2

2ar sinh 2 ,    
1 4

x x
x

+
+

 

 
M1A1, A1 
 

(3)
(b) 

∴
2

0
arsinh2 dx x∫  = [ ]

2
2

0 2
0

2ar sinh 2 d
1 4

xx x x
x

−
+

⌠
⎮
⌡

 
 
1M1 1A1ft 

 
                            =  [ ] 1

2

2
2 2

0
0

1ar sinh 2 (1 4 )
2

x x x⎡ ⎤− +⎢ ⎥⎣ ⎦
 

 
2M1  2A1 

                             =  3 1
2 22arsinh2 2 [ ]− −   

3DM1 
                                = 2 ln(3 2 2) 1+ −  

 
 
4M1  3A1 

(7)
(10 marks)

  
 
 
 Notes 

a1M1: Differentiating getting an arsinh term and a term of the form  
21

px
qx±

 

a1A1: cao  ar sinh 2x  

a2A1:  cao + 
2

2    
1 4

x
x+

 

b1M1: rearranging their answer to (a). OR setting up parts 
b1A1: ft from their (a) OR setting up parts correctly 

b2M1: Integrating getting an arsinh or arcosh term and a ( )2
1
21 ax± term o.e.. 

b2A1:  cao   
b3DM1: depends on previous M, correct use of 2 and 0 as limits. 
b4M1: converting to log form. 
b3A1: cao depends on all previous M marks. 
 
 
 



   

  

 

Question 
Number Scheme Marks 

 
6(a) 

 

2 2

2 2 d 0
d

x y y
a b x

+ =     and so  
2

2

d cos
d sin
y xb b
x ya a

θ
θ

= − = −  

 
 
M1 A1 

 
∴ siny b θ− =  cos ( cos )

sin
b x a
a

θ θ
θ

− −    

      Uses 2 2cos sin 1θ θ+ =  to give cos sin 1x y
a b
θ θ
+ =                        Ã 

 
M1 
 
A1cso 

(4)
(b) 

Gradient of circle is cos
sin

θ
θ

−  and equation of tangent is 

siny a θ− =
cos
sin

θ
θ

− ( cos )x a θ−  or sets a = b in previous answer 

M1 
 
 

   So sin cosy x aθ θ+ =  A1 
(2)

 
(c) 

 
Eliminate x or y to give sin ( 1) 0a

by θ − = or cos ( 1)b
ax b aθ − = −   

 
M1 

 
1l and 2l  meet at  ( 

cos
a
θ

, 0) 
A1, B1 

(3)

(d) The locus of R is part of the line y = 0, such that  and -x a x a≥ ≤  
Or clearly labelled sketch. 
Accept “real axis” 

B1, B1 
(2) 

(11 marks)

 
Notes 
a1M1: Finding gradient in terms of θ . Must use calculus. 
a1A1: cao 
a2M1: Finding equation of tangent 
a2A1:  cso (answer given). Need to get 2 2cos sinθ θ+  on the same side. 
b1M1: Finding gradient and equation of tangent, or setting a = b. 
b1A1: cao need not be simplified. 
c1M1: As scheme 

c1A1: 
cos

ax
θ

=  , need not be simplified. 

c1B1: y = 0, need not be simplified. 
d1B1: Identifying locus as y = 0 or real/’x’ axis. 
d2B1: Depends on previous B mark, identifies correct parts of y = 0. Condone use of strict 
inequalities. 
 
 
 
 
 
 



   

  

 
Question 
Number Scheme Marks 

7(a) f(x) =  5cosh x – 4sinh x = 1 1
2 25 ( ) 4 ( )x x x xe e e e− −× + − × −  M1 

         = 1
2 ( 9 )x xe e−+            Ã A1cso 

(2)
 (b)            

1
2 ( 9 )x xe e−+  = 5  2 10 9 0x xe e⇒ − + =  

 
M1 A1 

 So 9  or  1xe =   and x = ln9 or 0  
M1 A1 

(4)
(c) 

Integral may be written 2

2 d
9

x

x

e x
e +

⌠
⎮
⌡

 
 
B1 
 

 
This is 2 arctan

3 3

xe⎛ ⎞
⎜ ⎟
⎝ ⎠

 
 
M1 A1 

 Uses limits to give 2 2 1
3 3 3
arctan1 arctan( )⎡ ⎤−⎣ ⎦ = 2 2

3 34 6
π π⎡ ⎤× − ×⎣ ⎦  18

π= *  
DM1 A1cso 

(5)
(11 marks)

 
Notes 
 
a1M1: Replacing both coshx and sinhx by terms in xe and xe−  condone sign errors here. 
a1A1: cso (answer given) 
b1M1: Getting a three term quadratic in xe  
b1A1:  cao 
b2M1: solving to x =  
b2A1: cao need ln9 (o.e) and 0 (not ln1) 
c1B1: cao getting into  suitable form, may substitute first. 
c1M1: Integrating to give term in arctan 
c1A1:  cao 
c2M1: Depends on previous M mark. Correct use of ln3 and ½ ln3 as limits. 
c2A1: cso must see them subtracting two terms in π .  
 
 
 
 
 



   

  

 
Question 
Number Scheme Marks 

 
8. (a)        

2 1    0
1  2  0

1 0   4

λ
λ

λ

−
−

− −
  = 0 (2 )(2 )(4 ) (4 ) 0λ λ λ λ∴ − − − − − =  

 
M1 
 
 

  
(4 ) 0λ− = verifies 4λ = is an eigenvalue        (can be seen anywhere) 

 
M1 

 { }2(4 ) 4 4 1 0λ λ λ∴ − − + − =  { }2(4 ) 4 3 0λ λ λ∴ − − + =  A1 
 

 (4 )( 1)( 3) 0λ λ λ∴ − − − =  and 3 and 1 are the other two eigenvalues M1 A1 
(5) 

(b) 
    Set

 2 1 0
 1 2 0 4
1  0 4

x x
y y
z z−

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

  or   
2 1 0 0
1 2 0 0
1  0   0 0

x
y
z

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

  
 

 
M1 

 
 Solve 2 0 and 2 0  and  0x y x y x− + = − = − =  to obtain x = 0, y = 0, 

 z = k 
M1  

 
 Obtain eigenvector as k (or multiple) A1          (3) 

(c) 

1l  has equation which may be written
  3
  2

2 2

λ
λ
λ

+⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− +⎝ ⎠

 

 
B1 

 

So 2l  is given by r = 
2    1     0
1     2    0
-1   0    4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  3
  2

2 2

λ
λ
λ

+⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− +⎝ ⎠

 

 
M1 

 

    i.e. r = 
    8
    7

11 7

λ
λ
λ

+⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− +⎝ ⎠

 

 
 
M1 A1 

 So − × =(r c) d 0 where c = 8i + 7j - 11k and d =i - j + 7k A1ft       (5) 
(13 marks)

Notes 
a1M1: Condone missing = 0. (They might expand the determinant using any row or column)  
a2M1: Shows λ  = 4 is an eigenvalue. Some working needed need to see  = 0 at some stage. 
a1A1: Three term quadratic factor cao, may be implicit (this A depends on 1st M only) 
a2M1: Attempt at factorisation (usual rules), solving toλ = . 
a2A1: cao. If they state λ = 1 and 3 please give the marks. 
b1M1: Using Ax = 4x o.e. 
b2M1: Getting a pair of correct equations. 
b1A1: cao  
c1B1: Using a and b. 
c1M1: Using r = M x their matrix in a and b. 
c2M1:  Getting an expression for l2 with at least one component correct.  
c1A1:  cao all three components correct 
c2A1ft: ft their vector, must have r = or (r-c)x d = 0 need both equation and r.   


